Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « <u>03</u> » апреля <u>20 23</u> г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Математическое моделирование аддитивных процессов			
		(наименование)		
Форма обучения:		очная		
_		(очная/очно-заочная/заочная)		
Уровень высшего обр	разования:	магистратура		
		(бакалавриат/специалитет/магистратура)		
Общая трудоёмкость:		180 (5)		
		(часы (ЗЕ))		
Направление подгото	овки:	15.04.01 Машиностроение		
		(код и наименование направления)		
Направленность: Передовые		производственные технологии газотурбинных		
_		двигателей		
	(1	таименование образовательной программы)		

1. Общие положения

1.1. Цели и задачи дисциплины

Цель дисциплины - формирование у студентов теоретических знаний и практических навыков моделирования аддитивных процессов.

Задачи дисциплины:

- научить методам моделирования аддитивных процессов;
- научить методам проектирования изделий, учитывающих особенности процессов их аддитивного изготовления
- ознакомить с современным программным обеспечением для моделирования процессов и систем;

1.2. Изучаемые объекты дисциплины

Предметом освоения дисциплины являются следующие объекты:

- методы моделирования аддитивных процессов;
- методы проектирования изделий, учитывающих особенности процессов их аддитивного изготовления
- современное программное обеспечения для моделирования процессов и систем;

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-3.5		Знать методы технологического проектирования с использованием математического моделирования аддитивных процессов	Знает технические возможности технологического оборудования организации. и методы технологического проектирования	Дискуссия
ПК-3.5	ИД-2ПК-3.5	Уметь выполнять моделирование аддитивных процессов для	Умеет систематизировать и анализировать информацию по результатам работы профильного подразделения	
ПК-3.5		Владеть навыками моделирования изделий и аддитивных процессов, применяемых для их изготовления.	Владеет навыками проектирования технологических процессов передовых достижений науки и техники	Курсовая работа

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-3.7	ИД-1ПК-3.7	Знать методы анализа технического уровня объектов техники и технологии, основанные на этапах предварительного математического моделирования	Знает принципы технологического группирования изделий, методы анализа технического уровня объектов техники и технологии	Дискуссия
ПК-3.7	ид-2ПК-3.7	аддитивных процессов для групп машиностроительных изделий	Умеет классифицировать машиностроительные изделия по конструктивнотехнологическим признакам для формирования групп, для которых целесообразно разрабатывать групповые технологические процессы	Коллоквиум
ПК-3.7	, ,	Владеть навыками разработки конструкторско-технологических решений, для производства которых применяются аддитивные технологии.	Владеет навыками унификации и типизации конструкторско-технологических решений	Коллоквиум

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах	
	часов	Номер семестра	
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	54	<u>3</u> 54	
- лекции (Л)	18	18	
- лабораторные работы (ЛР)			
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	34	34	
- контроль самостоятельной работы (КСР)	2	2	
- контрольная работа			
1.2. Самостоятельная работа студентов (СРС)	90	90	
2. Промежуточная аттестация			
Экзамен	36	36	
Дифференцированный зачет			
Зачет			
Курсовой проект (КП)	36	36	
Курсовая работа (КР)			
Общая трудоемкость дисциплины	180	180	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		Объем аудиторных занятий по видам в часах Л ЛР ПЗ		Объем внеаудиторных занятий по видам в часах СРС
3-й семест	гр			
Современные методы математического моделирования систем и процессов	6	0	6	22
Тема 1. Механика деформируемого твердого тела Тема 2. Современные численные методы моделирования систем и процессов Тема 3. Задачи нестационарной теплопроводности для тел с нелинейными физико-механическими свойствами				
Конструирование машиностроительных изделий на основе методов топологической оптимизации	6	0	14	34
Тема 4. Современные математические методы и алгоритмы оптимизации, их практическая реализация в программных системах Тема 5. Введение в топологическую оптимизацию Тема 6. Современные реализации алгоритмов топологической оптимизации, функционал, инструменты и основные методики использования				
Моделирование аддитивных процессов	6	0	14	34
Тема 7. Методы моделирования аддитивных процессов Тема 8. Современные реализации методов моделирования аддитивных процессов, функционал, инструменты и основные методики применения Тема 9. Многоуровневое моделирование аддитивных процессов				
ИТОГО по 3-му семестру	18	0	34	90
ИТОГО по дисциплине	18	0	34	90

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Базовые инструменты расчетных инженерных пакетов общего назначения, САЕ-системы
2	Задачи нестационарной теплопроводности для тел с нелинейными физико-механическими свойствами
3	Методы и алгоритмы оптимизации, их практическая реализация в программных CAE- системах
4	Топологическая оптимизация изделия с использованием инструментария современных САЕ-систем
5	Оптимизация с учетом ограничений в условиях многовариантного нагружения

№ п.п.	Наименование темы практического (семинарского) занятия
6	Ячеистые конструкции
	Современные инструменты для моделирования аддитивного процесса изготовления. Инструменты технолога
	Рационализация параметров технологического процесса аддитивного производства на основе методов математического моделирования, планирования эксперимента и оптимизации
9	Многоуровневое моделирование аддитивных процессов

Тематика примерных курсовых проектов/работ

№ п.п.	Наименование темы курсовых проектов/работ
	Перепроектирование детали(по вариантам) газотурбинного двигателя, изготавливаемой методами аддитивных технологий
	Рационализация параметров технологического процесса аддитивного производства на основе методов математического моделирования

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке
	1. Основная литература	
1	Бояршинов М. Г. Методы вычислительной математики: учебное пособие. Пермь: Изд-во ПГТУ, 2008. 420 с.	60
2	Шингель Л. П. Системы автоматизированного проектирования. Решение задач прочностного анализа с использованием пакета программ ANSYS 12.1: учебно-методическое пособие. Пермь: Издво ПНИПУ, 2015. 52 с. 3,5 усл. печ. л.	20
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Басов К. А. ANSYS для конструкторов. М.: ДМК Пресс, 2009. 247 с.	5
2	Введение в математическое моделирование : учебное пособие для вузов / Ашихмин В.Н., Гитман М.Б., Келлер И.Э., Наймарк О.Б. М : Логос, 2005. 439 с.	31
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	ины
	Не используется	
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Основная литература			локальная сеть; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и внедрением	ANSYS (лиц. 1062978)

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/
Электронная библиотека диссертаций Российской государственной бибилиотеки	http://www.diss.rsl.ru/
Информационно-справочная система нормативно- технической документации "Техэксперт: нормы, правила, стандарты и законодательства России"	https://техэксперт.caйт/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Курсовой проект	компьютеры	10
Лекция	проектор	1
Практическое занятие	компьютеры	10

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
------------------------------	--

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

y TB	верждено
на заседании ка	федры ИТМ
протокол №11 от	21.04. 2022
Ваведующий кафе	дрой
B.]	В. Карманов

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

«Математическое моделирование аддитивных процессов» основной профессиональной образовательной программы высшего образования — программы магистратуры

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине Приложение к рабочей программе дисциплины

Направление подготовки: 15.03.01 Машиностроение

Направленность (профиль) Передовые производственные технологии

образовательной программы: газотурбинных двигателей

Квалификация выпускника: магистр

Выпускающая кафедра: Инновационные технологии в машиностроении

Форма обучения: Очная

Курс: 2 Семестр: 3

Трудоёмкость:

Кредитов по рабочему учебному плану: 5 3E Часов по рабочему учебному плану: 180 ч.

Виды промежуточного контроля:

Экзамен: 3 семестр, КП: 3 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся является частью (приложением) к рабочей программе дисциплины «Математическое моделирование аддитивных процессов» и разработан на основании:

- положения о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, специалитета и магистратуры в ПНИПУ, утвержденного «29» апреля 2014 г.;
- приказа ПНИПУ от 03.12.2015 № 3363-В «О введении структуры ФОС»;
- рабочей программы дисциплины «Математическое моделирование аддитивных процессов», утвержденной 24 ноября 2020 г.

1. Перечень формируемых частей компетенций, этапы их формирования и контролируемые результаты обучения

1.1. Формируемые части компетенций

Согласно КМВ ОПОП учебная дисциплина «Математическое моделирование аддитивных процессов» участвует в формировании компетенции:

- **ПК-3.5.** Способен осуществлять разработку с использованием CAD-, CAPP-систем технологических процессов изготовления машиностроительных изделий высокой сложности.
- **ПК-3.7.** Способен осуществлять подготовку предложений по повышению эффективности использования CAD-, CAPP-систем в организации.

1.2. Этапы формирования дисциплинарных частей компетенций, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (3-го семестра базового учебного плана) и разбито на 3 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты дисциплинарных компетенций знать, уметь, владеть, указанные в РПД, и которые выступают в качестве контролируемых результатов обучения (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по практическим работам, курсовому проекту и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты освоения	Вид контроля				
дисциплины (ЗУВы)		КР	П3	КП	Экзамен
Знает:					
методы технологического проектирования с	+	+			+
использованием математического					
моделирования аддитивных процессов					
методы анализа технического уровня	+	+			+
объектов техники и технологии, основанные					
на этапах предварительного математического					

моделирования				
Умеет:				
систематизировать и анализировать необходимую для моделирования аддитивных процессов информацию по результатам работы профильных подразделений		+	+	+
выполнять моделирование аддитивных процессов для групп машиностроительных изделий		+	+	+
Владеет:				
навыками моделирования изделий и аддитивных процессов, применяемых для их изготовления		+	+	+
навыками разработки конструкторско- технологических решений, для производства которых применяются аддитивные технологии		+	+	+

^{*}ТТ – собеседование или текущее тестирование (контроль знаний по теме);

КП – курсовой проект.

Итоговой оценкой освоения дисциплинарных компетенций (результатов обучения по дисциплине) является промежуточная аттестация в виде экзамена, проводимая с учётом результатов текущего и рубежного контроля.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

2.1. Текущий контроль

Текущий контроль для оценивания знаниевого компонента дисциплинарных частей компетенций (табл. 1.1) в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

По темам, имеющим большую теоретическую нагрузку для контроля знаний (табл. 1.1) проводятся контрольные работы. Качество и полнота ответов на вопросы оценивается по 4-балльной шкале, заносятся в книжку преподавателя и учитывается в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений дисциплинарных частей компетенций (табл. 1.1) проводится согласно графика учебного процесса в форме защиты практических работ, контрольной работы.

2.2.1. Защита практических работ

Всего запланировано 9 практических работ. Типовые темы практических работ приведены в РПД.

КР – рубежная контрольная работа по модулю (оценка умений);

ПЗ – выполнение практических заданий с подготовкой отчёта (оценка владения).

Защита практической работы проводится индивидуально каждым студентом или группой студентов. Шкала и критерии оценки приведены в таблице 2.1.

Таблица 2.1. Критерии и шкала оценивания уровня освоения дисциплинарных компетенций на практической работе

Балл за Уровень		Уровень освоения	Критерии оценивания уровня освоения дисциплинарных компетенций после изучения		
знания	умения	oczociii.	учебного материала		
5	5	Максимальный уровень	Задание выполнено в полном объеме. Студент точно ответил на контрольные вопросы, свободно ориентируется в предложенном решении, может его модифицировать при изменении условия задачи.		
4	4	Средний уровень	Задание выполнено в полном объеме. Студент ответил на теоретические вопросы, испытывая небольшие затруднения.		
3	3	Минимальный уровень	Студент представил решения большинства заданий, предусмотренных в работе. Студент не может полностью объяснить полученные результаты.		
2	2	Минимальный уровень не достигнут	Студент не выполнил задания работы и не может объяснить полученные результаты.		

Результаты защиты практических работ по 4-балльной шкале оценивания знаний и умений заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2.2. Контрольная работа

Согласно РПД запланировано 3 контрольных работы (КР). Тематика контрольных работ:

Модуль 1

1. Современные методы математического моделирования систем и процессов

Модуль 2

2. Конструирование машиностроительных изделий на основе методов топологической оптимизации

Модуль 3

3. Моделирование аддитивных процессов

2.3 Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех практических работ и положительная интегральная оценка по результатам

текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, комплексные задания (КЗ) для проверки освоенных умений и владений.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

Билет содержит два вопроса.

2.3.1. Типовые вопросы и задания для экзамена по дисциплине Типовые вопросы для контроля усвоенных знаний

- 1. Численное методы решения задач механики деформируемого твердого тела. Метод конечных элементов.
- 2. Решение задач нестационарной теплопроводности с использованием САЕ-систем.
- 3. Топологическая оптимизация. Основные принципы, назначение и особенности применимости.
- 4. Базовые подход и алгоритмы топологической оптимизации
- 5. Основные подходы к моделированию аддитивных процессов.
- 6. Реализации методов математического моделирования аддитивных процессов.
- 7. Многоуровневое моделирование аддитивных процессов&

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Шкала и критерии оценки результатов обучения для компонентов *знать*, *уметь и владеть* приведены в таблицах 2.4 и 2.5.

Таблица 2.4. Шкала оценивания уровня знаний

Балл	Уровень усвоения	Критерии оценивания уровня усвоенных знаний
5	Максимальный уровень	Студент правильно ответил на теоретические вопросы. Показал отличные знания в рамках усвоенного учебного материала.
4	Средний уровень	Студент ответил на теоретические вопросы с небольшими неточностями. Показал хорошие знания в рамках усвоенного учебного материала.
3	Минимальный уровень	Студент ответил на теоретические вопросы с существенными неточностями. Показал удовлетворительные знания в рамках усвоенного

Балл	Уровень усвоения	Критерии оценивания уровня усвоенных знаний
		учебного материала.
2	Минимальный уровень не достигнут	При ответе на теоретические вопросы студент продемонстрировал недостаточный уровень знаний.

Таблица 2.5. Шкала оценивания уровня умений и владений

Балл	Vnoneur canacius Vnortanus avaius avaius vnonus aanacius v vitauus		
	Уровень освоения	Критерии оценивания уровня освоенных умений	
5	Максимальный уровень	Студент правильно выполнил комплексное задание.	
		Показал отличные умения в рамках освоенного	
		учебного материала, отличные владения навыками	
		полученных знаний и умений при решении	
		профессиональных задач. Ответил на все	
		дополнительные вопросы.	
4	Средний уровень	Студент выполнил комплексное задание с	
		небольшими неточностями. Показал хорошие	
		умения, хорошие владения навыками применения	
		полученных знаний и умений при решении	
		профессиональных задач в рамках усвоенного	
		учебного материала. Ответил на большинство	
		дополнительных вопросов.	
3	Минимальный уровень	Студент выполнил комплексное задание с	
		существенными неточностями. Показал	
		удовлетворительные умения, удовлетворительное	
		владение навыками применения полученных знаний и	
		умений при решении профессиональных задач в	
		рамках усвоенного учебного материала. При	
		ответах на дополнительные вопросы было	
		допущено много неточностей.	
2	Минимальный уровень	При выполнении комплексного задания студент	
	не достигнут	продемонстрировал недостаточный уровень	
		умений, недостаточный уровень владения умениями	
		и навыками при решении профессиональных задач в	
		рамках усвоенного учебного материала. При	
		ответах на дополнительные вопросы было	
		допущено множество неточностей.	

2.3.3. Типовые задания для выполнения курсового проекта для контроля освоенных умений и контроля приобретенных владений

Типовые задания для выполнения курсового проекта представлены в приложении 2.

3. Критерии оценивания уровня сформированности дисциплинарных компетенций

При оценке уровня сформированности дисциплинарных компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой дисциплинарной компетенции обобщается на соответствующий компонент всех дисциплинарных компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех дисциплинарных компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС программы бакалавра.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС программы бакалавра.

Приложение 1. Пример билета для экзамена

15.03.01 Машиностроение Кафедра «Инновационные технологии машиностроения» Дисциплина «Математическое моделирование аддитивных процессов»

МИНОБРНАУКИ РОССИИ ФГАОУ ВО «Пермский национальный исследовательский политехнический университет» (ПНИПУ)

Билет №1

- 1. Численное методы решения задач механики деформируемого твердого тела. Метод конечных элементов.
- 2. Комплексное задание №1. Определить коробление и остаточные напряжения в детали после ее изготовления методом селективного лазерного сплавления и отделения от плиты построения. Дать рекомендации по снижению коробления и остаточных напряжений. Геометрия детали, свойства материала и режимы аддитивного процесса выдаются преподавателем.

Составитель		
(подпись)		
Заведующий кафедрой _		B.B. Карманов
	(подпись)	
«»	20 г.	

Приложение 2. Вариант типового задания для курсового проекта

Необходимо перепроектировать кронштейна №1 створки капота авиационного газотурбинного двигателя (нумерация и расположение всех кронштейнов показаны на схеме, выдаваемой преподавателем) с использованием методов топологической оптимизации. Итоговый перепроектированный кронштейн должен выдерживать эксплуатационные нагрузки на двух заданных режимах.

Необходимо выполнить моделирование процесса аддитивного изготовления вновь спроектированного кронштейна методом селективного лазерного сплавления. В процессе моделирования рационализировать размещение кронштейна на плите построения, рассмотреть не менее 3 вариантов ориентации.

Исходные данные:

- CAD-модель детали (выдается преподавателем в электронном виде).
- Нагрузки для расчета статической прочности кронштейна.

Полетный режим №1: Fx=-150 кгс, Fy=-553 кгс, Fz=12 кгс.

Полетный режим №2: Fx=-265 кгс, Fy=-612 кгс, Fz=-52 кгс.

Усилия приведены в месте расположения оси кронштейна, направление компонент сил соответствует направлению осей цилиндрической системы координат, расположенной в центре створок капота.

- Требования по прочности.
 - Детали должны выдерживать максимальные эксплуатационные нагрузки. Напряжения в деталях на должны превышать заданную величину (задается в соответствии с материалом кронштейна). Детали должны выдерживать расчетные нагрузки (это эксплуатационные нагрузки, умноженные на коэффициенты безопасности). Принять дополнительный коэффициент безопасности 1,5 (то есть все нагрузки должны быть умножены на 1,5).
- Требования по весу.
 Вес кронитейна должен быть снижен не менее чем на 10%.

Содержание курсового проекта

Введение

- 1. Описание объекта исследования
 - 1.1 Исходная геометрия детали ГТД
 - 1.2 Краевые условия: действующие нагрузки и условия закрепления
 - 1.3 Физико-механические и теплофизические свойства материала изделия.
- 2. Методы решения поставленных задач
 - 2.1 Методика решения задачи топологической оптимизации
 - 2.2 Методики решения задачи моделирования аддитивного процесса селективного лазерного сплавления
- 3. Топологическая оптимизация детали ГТД
 - 3.1 Подготовка расчетной области
 - 3.2 Задание физико-механических и теплофизических свойств материала

- 3.3 Создание конечно-элементной сетки
- 3.4 Задание граничных условий
- 3.5 Топологическая оптимизация детали ГТД. Подготовка новой CADгеометрии (Исполнение №1). Проведение проверочных расчетов
- 3.6 Топологическая оптимизация детали ГТД, пригодной к изготовлению методом SLM с минимальным наличием поддерживающих структур. Подготовка новой CAD-геометрии (Исполнение №2). Проведение проверочных расчетов (факультативно)
- 3.7 Топологическая оптимизация детали ГТД, пригодной к изготовлению «классическими» субстрактивными методами. Подготовка новой САО-геометрии (Исполнение №3). Проведение проверочных расчетов (факультативно)
- 4. Численное моделирование технологического процесса изготовления облегченной детали ГТД методом SLM с использованием ANSYS Additive Print
 - 4.1 Оценка напряженно-деформированного состояния детали (Исполнение №1) при ее изготовлении методами аддитивного производства.

В том числе:

- подготовка проекта для моделирования аддитивного процесса. Обоснование выбранных параметров моделирования и принятых допущений;
- автоматическое создание системы поддержек (при необходимости), наглядная демонстрация созданных поддержек;
- определение остаточных напряжений и коробления до отделения детали от плиты построения;
- определение остаточных напряжений и коробления после отделения детали от плиты построения;
- определение областей, где возможно разрушение заготовки детали в процессе изготовления;
- оценка вероятности соприкосновения растущей детали с подвижными механизмами аддитивной установки.
- компенсация CAD-геометрии с целью снижения остаточного коробления детали после отделения ее от плиты построения.
- 4.2 Оптимизация поддержек средствами ANSYS Additive Print с целью снижения коробления и недопущения разрушения заготовки во время технологического процесса.

В том числе:

- наглядная демонстрация созданных оптимизированных поддержек;
- определение остаточных напряжений и коробления после отделения детали от плиты построения;
- определение областей, где возможно разрушение заготовки детали в процессе изготовления;
- компенсация CAD-геометрии с целью снижения остаточного коробления детали после отделения ее от плиты построения;
- сравнение результатов выполнения пунктов 4.1 и 4.2

4.3 Рационализация размещения (ориентации) изготавливаемой заготовки на плите построения средствами ANSYS Additive Print с целью снижения коробления и недопущения разрушения заготовки во время технологического процесса.

В том числе, для нескольких расчетных вариантов (не менее, чем 3 (три)):

- создание оптимизированных поддержек и их наглядная демонстрация;
- определение остаточных напряжений и коробления после отделения детали от плиты построения;
- определение областей, где возможно разрушение заготовки детали в процессе изготовления;
- компенсация CAD-геометрии с целью снижения остаточного коробления детали после отделения ее от плиты построения;
- сравнение результатов выполнения пунктов 4.1 и 4.3
- 4.4 Рационализация конструктивных особенностей и технологических параметров изготовления заготовки детали «Исполнение №2» $(\phi a \kappa y n b m a m u b h o)$
- 4.5 Рационализация конструктивных особенностей и технологических параметров изготовления заготовки детали «Исполнение N_{2} 3» (факультативно)
- 5. Численное моделирование технологического процесса изготовления облегченной детали ГТД методом SLM с использованием ANSYS Workbench Additive (факультативно)
 - 5.1 Оценка напряженно-деформированного состояния детали (Исполнение №1) при ее изготовлении методами аддитивного производства с использованием ANSYS Workbench Additive (факультативно).

В том числе:

- подготовка проекта для моделирования аддитивного процесса. Обоснование выбранных параметров моделирования и принятых допущений;
- автоматическое создание системы поддержек (при необходимости), наглядная демонстрация созданных поддержек;
- определение остаточных напряжений и коробления до отделения детали от плиты построения;
- определение остаточных напряжений и коробления после отделения детали от плиты построения;
- компенсация CAD-геометрии с целью снижения остаточного коробления детали после отделения ее от плиты построения;
- 5.2 Рационализация размещения (ориентации) изготавливаемой заготовки на плите построения средствами ANSYS Workbench Additive (факультативно).
- 5.3 Рационализация параметров и режимов техпроцесса изготовления заготовки детали аддитивным способом средствами ANSYS Workbench Additive (факультативно).
- 5.4 Конструкторско-технологические решения в части рационализации режимов и параметров технологического процесса изготовления заготовки

- детали (Исполнение №2) методом селективного лазерного сплавления (факультативно).
- 5.5 Конструкторско-технологические решения в части рационализации режимов и параметров технологического процесса изготовления заготовки детали (Исполнение №3) методом селективного лазерного сплавления (факультативно).

Заключение

Список использованных источников

Приложения